

Naturalis®

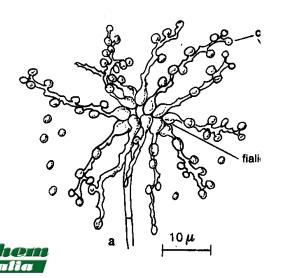
(a.s. Beauveria bassiana strain ATCC 74040):

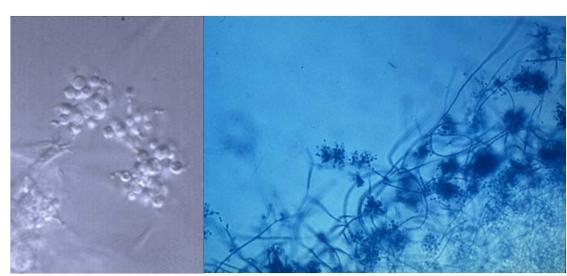
effective against Tetranychid mites and harmless to predatory Phytoseiid mites

<u>Edith Ladurner</u>, Massimo Benuzzi, Sergio Franceschini, Andrea Braggio Intrachem Bio Italia S.p.A., R & D Department

Naturalis®

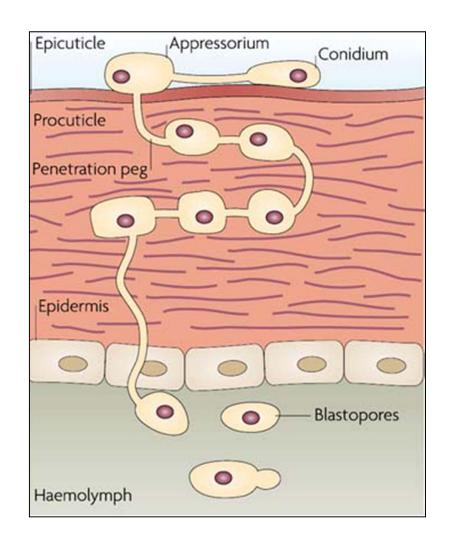
- Naturalis is a bioinsecticide containing at least 2.3 x 10⁷ viable conidiospores / ml of *B. bassiana* strain ATCC 74040.
- ATCC 74040 was obtained from the cotton boll weevil, Anthonomus grandis, at the USDA-ARS Crop Insect Research Center, Lower Rio Grande Valley, Texas, USA (not genetically modified).
- In 2005 Intrachem Bio International S.A. (Geneva, Switzerland) acquired the intellectual property rights from Troy Biosciences Inc.
- Manufacturing occurs under the control of Intrachem Production S.r.I. (Bergamo, Italy).
- Naturalis is registered in USA, Mexico, Italy, Spain, Greece, Switzerland, Morocco, UK, Hungary, Cyprus, Slovenia, Ireland, Turkey (Dopteril), and Korea.
- Registration is pending in the Netherlands and Germany.





Beauveria bassiana

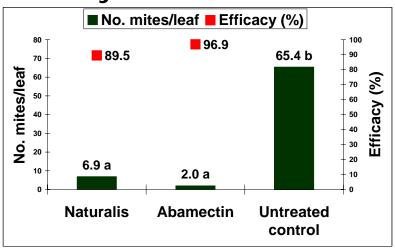
- Beauveria bassiana (Deuteromycetes, Moniliales) was first recognized in 1835 by Agostino Bassi as the causal agent of the white muscardine disease of the silkworm.
- *B. bassiana* can affect a wide range of arthropod pests, mites included, and all their developmental stages (eggs, immature stages, and adults).
- Various strains differ in their host range and selectivity.



B. bassiana ATCC 74040

Mode of action - contact bioinsecticide

- The conidiospores, in contact with the insect's cuticle, germinate and form an appressorium.
- A fine penetration hypha perforates the cuticle, grows, and differentiates into other penetration hyphae. The fungus invades the insect's body.
- The mycelium proliferates by feeding on the host's haemolymph, and blastospores are produced.
- The host dies within a few days due to depletion of nutrients and dehydration.

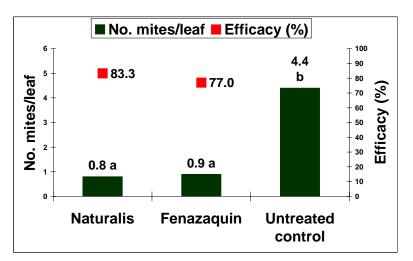


Naturalis®

Major targets

- White flies
- Tetranychid mites
- Thrips
- Wireworms
- Fruit flies (Tephritid flies)

Tetranychid mites



Strawberry, Spain 1998 (Agrichem Bio S.A.)

Tomato, Italy 2006 (Agrigeos)

Summary of 3 recent laboratory studies on the effects of Naturalis on:

Study no.	Target mite (Prey)	Non-target mite (Predator)
1	Tetranychus urticae	Phytoseiulus persimilis
2	Tetranychus urticae	Neoseiulus californicus
3	Eotetranychus carpini	Kampimodromus aberrans

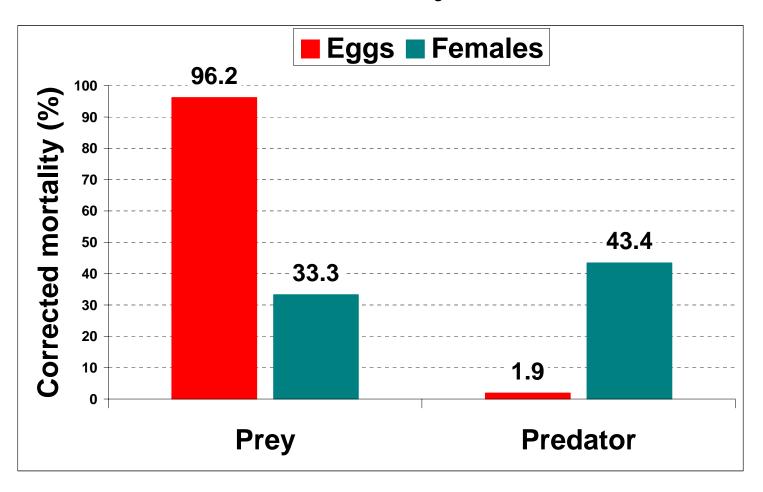
NORESIDUE® Assessments

- % corrected mortality according to Abbott on eggs and females
 M (%) = (MT MC)/(100 MC) x 100
- fecundity (no. eggs/female/day)
- % egg hatching
- effects on generation exposed to treatment (F0) and successive generation (F1)

Exposure

- Type: direct contact (micro-immersion bioassays; leaf dip bioassays; direct spray)
- Applied rate: recommended field rate of Naturalis (80-120 ml/100 l; 0.08-0.12% v/v)

Material and Methods


for details see cited literature

Results Study 1 Tetranychus urticae & Phytoseiulus persimilis

% corrected mortality (Abbott)

Duso et al., 2008. Comparative toxicity of botanical and reduced-risk insecticides to Mediterranean populations of *Tetranychus urticae* and *Phytoseiulus persimilis* (Acari Tetranychidae, Phytoseiidae). Biological Control 47, 16-21.

Results Study 1 Tetranychus urticae & Phytoseiulus persimilis

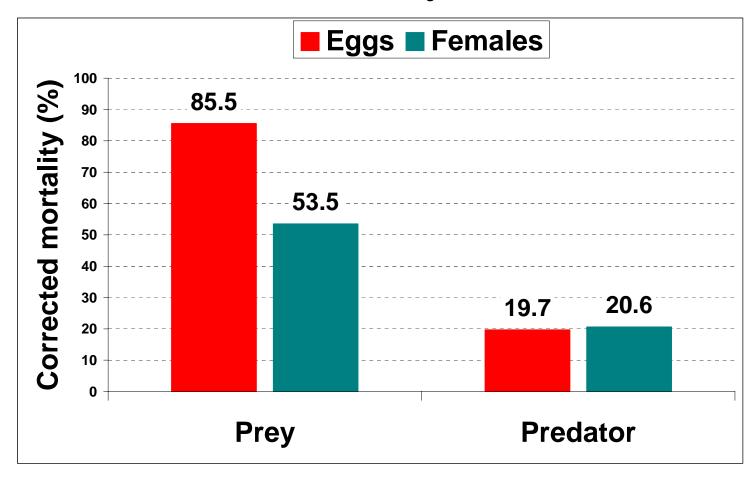
No. eggs/female/day (F0) and % egg hatching

Prey

Tetranychus urticae	No. eggs/female/day	% egg hatching	
Naturalis	0.04	0.0	
Control	3.51	81.0	

Predator

Phytoseiulus persimilis	No. eggs/female/day	% egg hatching	
Naturalis	1.6	82.5	
Control	3.1	86.5	



Duso et al., 2008. Comparative toxicity of botanical and reduced-risk insecticides to Mediterranean populations of *Tetranychus urticae* and *Phytoseiulus persimilis* (Acari Tetranychidae, Phytoseiidae). Biological Control 47, 16-21.

Results Study 2 Tetranychus urticae & Neoseiulus californicus

% corrected mortality (Abbott)

Simoni et al., 2010. Attività di *Beauveria bassiana* sull'acaro fitofago *Tetranychus urticae* e sul fitoseide *Neoseiulus californicus*. Atti Giornate Fitopatologiche 1, 305-310.

Results Study 2

Tetranychus urticae & Neoseiulus californicus

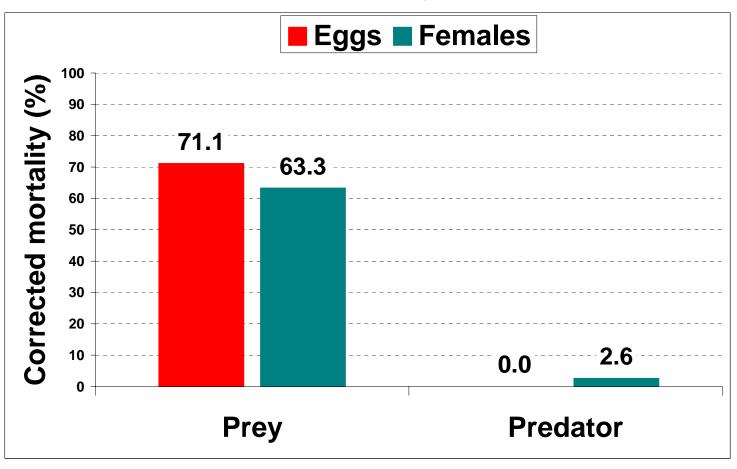
No. eggs/female/day of females exposed to treatment (F0) and females of 1st generation after treatment exposure (F1)

Prey

Tetranychus urticae	No. eggs/female/day F0	No. eggs/female/day F1	
Naturalis	2.9	3.8	
Control	4.7	5.2	

Predator

Neoseiulus californicus	No. eggs/female/day F0	No. eggs/female/day F1
Naturalis	1.3	2.5
Control	2.4	2.7


Simoni et al., 2010. Attività di *Beauveria bassiana* sull'acaro fitofago *Tetranychus urticae* e sul fitoseide *Neoseiulus californicus*. Atti Giornate Fitopatologiche 1, 305-310.

Results Study 3

Eotetranychus carpini & Kampimodromus aberrans

% corrected mortality (Abbott)

Simoni et al., 2010. Laboratory evaluation of the effects of *Beauveria bassiana* (strain ATCC 74040) on *Eotetranychus carpini* and *Kampimodromus aberrans*. XIII International Congress of Acarology, 23 - 27 August, 2010, Recife, Brazil.

Example - active substances for mite control on tomato

Active substance	Status (Annex I)	Target stage	MRL (tomato)	PHI (tomato)
abamectin	included	all mobile stages	0.02	7
clofentezine	included	eggs	0.3	15
etoxazole	included	eggs, larvae	0.02 *	3
fenpyroximate	included	all mobile stages	0.2	14
tebufenpyrad	included	all mobile stages	0.5	14
B. bassiana GHA	included	?	n.r. **	0
B. bassiana ATCC 74040	included	all	n.r. **	0
hexythiazox	voluntarily withdrawn	eggs, larvae	0.5	7
fenazaquin	voluntarily withdrawn	all	0.5	7
fenbutation oxide	voluntarily withdrawn	all mobile stages	2	30
propargite	voluntarily withdrawn	all mobile stages	2	15

* indicates lower limit of analytical determination ** not requested

Source: http://ec.europa.eu/sanco_pesticides/public/index.cfm; Win BDF, Banca dati Agrofarmaci: http://www.winbdf.it

Naturalis against Tetranychid mites - benefits:

- effective against all stages, especially eggs
- unique mode of action, different from that of any conventional chemical acaricide
- suitable for inclusion into resistance management strategies (can be tank-mixed with numerous insecticides and acaricides)
- no pre-harvest interval and no detectable MRL: useful to reduce risk of undesired residues in final produce
- safe to beneficials, humans, and environment
- suitable for any pest management strategy, Organic Farming included

In conclusion, Naturalis can be considered a valuable pest management tool for sustainable agriculture!

Thanks are due to:

- Prof. Carlo Duso University of Padova, Italy
- Dr. Sauro Simoni CRA - Agricultural Research Council, Florence, Italy
- Agrichem Bio S.A.Madrid, Spain
- you for your attention!

